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Scalar tensor theories and variable rest masses 

D K Ross 
Physics Department, Iowa State University, Ames, Iowa 50011, USA 

Received 31 May 1979 

Abstract. We consider a large class of scalar tensor theories which are derivable from a 
certain parametrised Lagrangian. The field equations are found and solved exactly for 
spherical symmetry. We identify the parameters appearing in this solution and use it to 
calculate the experimental predictions of this class of theories. This class contains a large 
variety of theories including general relativity, the Brans-Dicke theory, and theories with 
variable rest masses. Particular attention is paid to whether or not variable rest-mass effects 
are observable. We find that such effects are observable even if the theory is transformed 
back to laboratory units and cannot be ruled out by the standard solar system experiments. 

1. Introduction 

We investigate a broad class of scalar tensor theories in this paper. This class includes 
theories where particle rest masses vary with position (in some units) and therefore we 
learn something about the experimental consequences of such effects. A similar 
investigation has been carried out by Bekenstein (1977) for a different class of theories. 
The experimental consequences of various classes of scalar tensor theories have also 
been studied by Brans and Dicke (1961), Dicke (1962), Bergmann (1968), Wagoner 
(1970), Jordan (1948, 1955), Thirry (1948) and Nordtvedt (1970). Nutku (1969), Will 
(1974a) and Ni (1972) have discussed these theories within the PPN framework. The 
latter is not suitable for our purposes in general because we explicitly want to discuss 
theories which have variable particle masses. 

The theories we want to consider are given by the general variational principle: 

6 / ( R s A  +p$ l$I$A-z  + KL$~)J< d4x = 0. (1) 

Here A,  E, p and K are constants, R is the Ricci scalar, and $ is the scalar field (4' = $ , I ) .  
$ has dimension G-' where G is the gravitational constant so that K has different 
dimensions depending on the value of A and E. L is the Lagrangian for matter and 
includes particles, electromagnetic fields, etc, in general. For some uses below we will 
take L to be the particle Lagrangian 

(2) . I .  k 1/2 4 2 
&art ==; / mp[-glk(X)Z z 1 6 (X-zp) drp 

J-g 
where i' = dzb/dr, and rp is the path parameter of the pth particle. The variational 
principle (1) has been considered in a nice paper by Harrison (1972). (We will use 
Harrison's signature and sign conventions which are the same as the ones in Weinberg 
(1972). Note that Brans-Dicke use opposite signs for the Einstein tensor and opposite 
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558 D K Ross 

signs for R,uap in terms of the Christoffel symbols. Also we will always define 
covariant derivatives in terms of the usual Christoffel symbols so that the metric is 
always covariantly constant.) Its advantages are that scalar-conformal transformations 
convert the theory into a theory which is still of the form (1). Equation (1) includes 
many theories besides the Brans-Dicke theory and Einstein’s theory (if the appropriate 
energy momentum tensor for the scalar field is used), including non-metric theories 
with variable rest masses and theories which include creation. The functional depen- 
dence on IC/ is explicit and simple, however. 

Harrison (1972) showed that (1) is invariant under a scalar-conformal trans- 
formation of the form 

cl/++=*’l”x 

m ( & )  --f m’(g:k)  = +-Hm(glk) for particle masses 

grk * g:k = 4sFgik 

(3) 

where x is a constant and Cp is dimensionless. (1) is invariant under (3) in the sense that 
(3) gives a new variational principle in terms of g:, and q5 which is of the form (1) with 
analogous parameters A’, E‘, K ’  and p’ given by 

A ’ = p A - F  

E’ = p E  -+ H - F/2  

Note that because of (3), the matter Lagrangian (2) can be considered in general to have 
a hidden parameter H which determines how particle rest masses vary with position. 
Harrison primarily considered matter Lagrangians of the form (2) where 

- 3 / 2 F - H  
L(glK)+L’(g:K)= 4 L(gIK). 

If electromagnetic interactions are included, then we must have F = 2 H  or this 
equation and hence (4) will not hold. We will return to this requirement below. 

We will be interested in seeing which, if any, of the theories described by (1) agree 
with experiment, and in particular in seeing if H # 0 is compatible with experiment. (3) 
will be useful later in converting one theory into another and in particular in converting 
a theory with H = 0 into one with H f 0. 

Note that the parameter space of (3) includes the parameters for the type of units 
transformation considered by Dicke (1962) if we take p = F = 2 H  = 1 and x = I+F”~ 
where 4’ is the transformed version of 4 (assumed by Dicke to be a constant) and + is a 
dimensionless x,- dependent scale factor. 

We will solve the field equations arising from (1) for general A,  E, p, K and H exactly 
for a spherically symmetric point mass in § 2 below. In 0 3, we determine the equations 
of motion for a test particle including the effects of H and use them to determine the 
integration constants in the exact solution in terms of the mass M of the central body 
and the gravitational constant G as measured i n  a local Cavendish experiment. In § 4, 
we work out the physical predictions, for theories based on (l), for the Eotvos et a1 
(1922) experiment and for the three classic tests of general relativity. Finally, we 
discuss the physical viability and observability of H # 0 effects for theories based on (1) 
in § 5 .  
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2. Spherically symmetric solution 

We now want to find the exact spherically symmetric solution to the field equations. In 
the rest of this paper, $ will denote the general scalar field both before (3) has been 
carried out and after, so that the parameter H appears in (1) in the general case. 
Independent variations of g l k  and $ in (1) give the field equations (Harrison 1972) 

( ~ i  - ~ s ’ ~ R ) + ~ + D G ( $ ) + K T ’ ~ $ ~  = O  ( 5 )  

AR$A-P[2$U$- (2 -A)$ ‘$ , ]$A-2+  K E L $ ~  - 0  (6) 

and 

where 
D i ( $ )  E ( $ b A ) : k -  S i  (C IA  + p ( $ ’ f , / / k  - $ & $ i $ j ) $ A - 2 .  

Contracting (5) and substituting for R in (6) simplifies (6) to 

or to 
~ * - ‘ O * - ~ * ’ $ ~ * - ~ - K E T $ ~  = O  (A = 0) 

where L = 2 T  from the pressureless particle Lagrangian (2). 
The exact vacuum solution to (5) and (8) in isotropic coordinates is now 

where 

1 - B / r  2 / h  
-goo = QoJ-----; 1 + Blr  

$ = *o( 1 - B l r )  C’AA 

1 + B/r 

(7) 

(9) 

and Qo, Jo ,  C and B are arbitrary constants restricted by (C+1)2- 
C(1- pC/2A2) > 0. Boundary conditions at 03 give Qo = Jo  = 1 leaving three constants 
to be determined. For the case A = 0, the above expressions (10) to (13) are still valid if 
we let C -+ 0 and C/A + 77 where now, for example, 

A = (1 + ip$)1/2 (A = 0 case). (14) 

In this case Go, 77 and B are the constants to be determined. 
The above solution of our field equations reduces to the Misner solution of the 

Brans-Dicke (1961) equations for A = 1 as it should. The solution (10) to (13) can be 
obtained either by laborious calculation or by noticing that our field equations for the 
quantity $ A  have the same form as the Brans-Dicke equations if their coupling constant 
o + PIA2. Thus our solution for general A is a simple transformation of the Misner 
solution. Also note that other solutions where C is restricted differently as discussed by 
Brans (1962) can be transformed similarly. We are most interested in the solution (10) 
to (14). 



560 D K Ross 

3. Equations of motion and solution parameters 

We now want to determine the parameters C (or q), B and $o in our exact solution. 
First, however, we need the equations of motion of an uncharged test particle. If we 
vary (1) with respect to the matter variables in L where L is given by ( 2 )  with a variable 
rest mass m(x) = (L-Hmo, we find for a particular particle (dropping p subscripts) that 

- + { : l } U v  du " +-{u*uP m p  + g a p } =  0 
d r  m 

where ua  --= dx"/dr. Putting in our explicit dependence of m on the scalar field 4 then 
gives 

du" H*B -+ (:l}u"u --{Ua,@ + g"@} = 0. 
d r  9 

Thus test particles follow geodesics if and only if H = 0. 
We are now ready to determine C, B and t,bo in terms of A, E, H, p, K ,  M and G 

where M is the central mass and G is the gravitational constant as measured in a local 
Cavendish experiment. We will discuss A # 0 first and then the A = 0 case. We will 
need three equations. The first will identify G from the equations of motion for a 
radially infalling particle. The other two will arise from comparing the linearised goo 
equation and linearised $ equation (with a central mass present in Tap) with the exact 
vacuum solution (10) through (13). 

For a radially accelerating particle, we can let u 1  = u 2  = u 3  = 0 instantaneously. 
Then the equations of motion (1 6) become 

d2r *' 11 - :gbog"(uo)2 + H-g 
d r  4 

where a prime denotes a derivative with respect to r. To lowest order gl' = 1 and 
(U'))' = 1. Substituting gbo and 9' from our exact solution then gives 

(A # 0). _- 

We can write this as 

r---- d2r 2B( 7) (A#O) 
d r 2 -  Ar 

where now the left-hand side is dimensionless. The left-hand side of this equation can 
be measured to lowest order and will not depend on the units or coordinate system used, 
i.e. whether laboratory units with m =constant are used or some other units. To lowest 
order the right-hand side can then be defined in these units to be -GM/r where this G is 
then the gravitational constant as measured to lowest order in a local Cavendish 
experiment. Thus, we can make the identification 

G=-  2B ( 1-- 7) (AfO) .  
AM 

For A = 0 we can merely let C / A  + q here. A double check that (19) is correct is 
provided by the gravitational red-shift experiment (see (39) and the discussion follow- 
ing it below). For B/A given by (19), the red-shift experiment predicts the same result 
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for our general scalar tensor theory as for general relativity, thus establishing that local 
Lorentz frames fall with the same acceleration as test particles as one might expect. Any 
change in (19 )  would lead to a discrepancy between the acceleration of local Lorentz 
frames and of test particles. 

Now let us turn to the linearised equation for goo. The k = 0, j = 0 component of ( 5 )  
can be written as 

Now to lowest non-trivial order we have (Weinberg 1972) 
RL? = iv'gL? 

so that 

2 ( 2 )  - E - A  ( 0 )  4 + 2 p / A 2  + 2 E / A  v goo - -K$o Too( 3 + 2 p / A 2  

Now 2% = -T = S3(x)M so the retarded time solution to (22) can be immediately 
written down. When this solution is compared with gb? = 4B/Ar from ( l o ) ,  we can 
identify 

( A  # 0) .  
K -- - M- &-A 4B 

A 41T A 

A similar calculation for A = 0 yields 

( A  = 0) .  4B K E  -=M-*0 
A 4T (23') 

Similarly, the linearised equation for (I, = Go + 6, where 6 is small, from (8) is 

K T ( ~  + 2E/A)$t-A" 
(A  # O), ( 3  + 2 p / A 2  # 0) .  (24) 

A(3 + 2p/A2)  
OS$= 

Putting a point mass into T as above, finding the retarded time solution, and comparing 
with $ = $o-(2B/r)r(/o(C/AA) from (12) gives finally 

-2BC 1 K M ( ~  + ~ E / A ) I , ! J ~ - ~  
(A  # 0) .  -=- 

AA ~ I T  A(3+2P/A2)  

For A = 0 from ( 9 )  we have by a similar calculation 

-2Bv 1 K M E $ ~  
( A  = 0) ,  ( E  # 0) .  -=-- 

A ~ I T  p 
Note that E # 0 here. The A = 0, E = 0 case will be considered separately below. 

integration constants C, B and t,b0 in our exact solution. This gives for A # 0 
Now we can use our three equations ( 1 9 ) ,  (23 )  and ( 2 5 )  to determine the three 

-( 1 + 2 E / A )  
( 2  + @/Az + E / A )  

C =  

=(3+$) G ( $ ) [ 2 + z + A + x ( l + T ) ]  p E H 
2E -' 
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and 

G M  
2(1- HC/A)  

B = A  

where A is given by (13) and C by (27). (28) reduces to 

for A = 1, E = 0, H = 0, K = 8.ir which is the result obtained for this case by Brans and 
Dicke (1961). Note that IC is.dimensionless for this choice of A and E. For A = 0 we can 
determine q, B and $o from the A = 0 version of (19), from (23'), and from (26). If 
E # 0 we get 

-2E 
77 =P ( A  =0,  E ZO) 

( A = O , E # O )  G@T/ K 1 
*O" = (1 + 2HE//3) 

( A  = 0, E # 0) (33) 
M G  

2(1+ 2HE/p)  
B=A 

where A is given by (14) and (31). This completely determines our solution parameters 
except for the important case A = 0, E = 0 which is relevant to the Dicke (1962) theory. 
In this case, and only in this case, 3 uncouples from T in (9) and the linearised $ 
equation no longer depends on M, so that a condition like (26) is no longer obtainable. rl, 
also contributes to the gas field equations only to higher order. Since $o does not now 
appear in the G equation or in the linearised goo equation, these two equations can be 
solved for q and B and yield 

(34) 

K M  
B = -  - [ 1 + 2 / 3 ( 1 - 8 . i r G / ~ ) ~ ] ~ ' ~  ( A  = 0, E = 0). 

8T  2 (35) 

Experimental results will be found to depend on C (or q). Expressions for C and q in 
(27) and (31) are independent of K,  but q in (31) (the A = 0, E = 0 case) depends on K,  

and K assumes somewhat the role of ccl0 for this special case. In fact, for this case, Dicke 
(1962) chooses K = 8 ~ 1 4 0 '  where Jlo is the zeroth-order scalar field from the related 
Brans-Dicke (1961) theory. Using (30) and (34) then gives 

-3  
L 

( A  = 0, E = 0) 
P(3+2/3) 7 7 =  (34') 

for this special case. 
This concludes our discussion of the exact solution of the field equations, the 

equations of motion, and the determination of the integration constants. We are now in 
a position to calculate physical predictions for experiments for any theory described by 
(1). 
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4. Experimental predictions of the theories 

We will now discuss the Eotvos experiment and the three classic tests of general 
relativity and will calculate the predictions of our theories for these tests in terms of the 
parameters contained in (1). Note that the PPN formalism (Will 1974a, Will and 
Nordtvedt 1972) cannot be applied and so detailed calculations must be done, because 
we have non-metric theories for some values of A, E and H in ( l ) ,  and H # 0 effects are 
of interest to us. 

4.1. Eotvos experiment 

The Eotvos et a1 (1922) experiment and its modern extensions by Roll et a1 (1964) and 
Braginsky and Panov (1971) verifies to high accuracy the universality of free fall (UFF). 
UFF states that the world line of a freely falling test body is independent of its 
composition or structure. For our theories, taking the divergence of (5) yields 

(TfII/E);8 + TI): = 0. (36) 

If L in (1) contains electromagnetic contributions then (36) shows that Maxwell’s 
equations will be modified for some values of A, E and H. It is then easy to see from 
calculations similar to those done in the T, H, e, 1 formalism (Lightman and Lee 1973, 
Haugan and Will 1977) that charged particles will free fall differently from neutral ones 
and UFF will be violated. If we set E = 0 and F = 2 H  so that E’ = 0 in (4), then no 
difficulties with the Eotvos experiment arise. We will return to these conditions 
imposed by the Eotvos experiment in 0 5, meanwhile letting E, F and H remain 
unfixed. Notice that the F = 2 H  condition is also the requirement imposed if elec- 
tromagnetic source terms are to be put consistently into L matter in Harrison’s work. 

4.2. Gravitational red shift 

Gravitational red shift experiments (Pound and Rebka 1960, Pound and Snyder 1964) 
establish that local Lorentz frames fall with the same acceleration as test particles (Will 
1974b), and so are meaningful. To derive the red shift for the general case in which the 
rest mass of particles can be a function of position, consider a transmitter at rl emitting 
frequency vl and a second transmitter at a higher elevation r2 which emits frequency v2. 

At r2 we have a receiver which compares the received signal from the two transmitters, 

frequencies of atomic transitions are proportional to the mass of the electron. Thus we 
have ‘real’ changes in frequencies given by 

vreceivedl and Vreceivedz v2. We want to find (vreceivedl - vre,eived*)/(vreceived2). Now the 

where we used (12) in linearised form and substituted B / h  from (29). We also get a 
gravitational red shift 

using goo from (10) and again substituting B / h  from (29). Combining (37) and (38) with 
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Vreceivedz v2 then gives 

Vreceivedl - vreceivedz 1 1  
Vreceivedz 

(39) 

Thus the ‘real’ energy level changes just compensate rather miraculously the H -  
dependent terms in the gravitational red shift to yield the usual Einstein gravitational 
red shift. In fact the second-order term in (39)  is (G2M2/2) ( l / r l -1 /r2)2  so that 
H-dependent terms cancel even in higher order! The A = 0 case goes through in the 
same way. Thus all theories described by ( 1 )  have the usual gravitational red shift. This 
rather interesting result is not obvious since we are including some non-metric theories. 

4.3. Deflection of starlight 

Light travels a null geodesic even in the general case where particle masses are functions 
of position. Thus the metric alone determines the deflection of starlight. If we 
parametrise the isotropic metric as 

+. . .) dt2 

( d p 2 + p 2 d 6 2 + p 2 s i n 2 6 d 4 2 ) ,  i r  
then the deflection of starlight is 

where general relativity predicts 4MG/ro. Expanding our exact solution (10) and (1 1 )  
and identifying a and y gives then 

a = 115 s = 1/t2 Y = (C + 1) /5  (42) 

where 8 = 1 - HC/A.  Thus we have 

where C is given by (27). This depends on H, A, E and p now. For H = 0, E = 0,  A = 1 
the correction factor becomes ( 3  + 2p)(4 + 2p)-’ which is the Brans-Dicke result. For 
the A = 0 case, the correction factor becomes ( 1  -Hq)-’ where q is given by (31 )  if 
E # 0 or by (34’) if E = 0. 

4.4. Advance of perihelion of Mercury 

Our modified equations of motion now also play a role. It is most convenient to work in 
standard rather than in isotropic coordinates now. In standard coordinates, we can 
write 

d.r2 = P(r) dt2 - N ( r )  dr2 - r2 do2 - r2  sin2 6 dq5’ 
(44) 

VGM+ WG2M2 
r r2 +-2H(r )  = + ; 2 ~ (  1 + - 
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where T is proper time and 

MG M 2 G 2  
P ( r )  = 1 -2a -+2(~  -ay)- r r2 

MG 
N ( r ) = l + 2 y -  

r 

A 

HC( y )( yj2 
w = 2 -  1+-+c 1-- , 

A (45) 

a, S and y are given in (42). Manipulating and integrating our equations of motion (16) 
along the lines of the calculation by Weinberg (1972) leads to an orbit of the form 

where E and J are integration constants related to the conserved energy and angular 
momentum. Again, following Weinberg, this leads to a perihelion shift per revolution 
of 

2 a 2 - S + a y +  y -  W/2 
3 

Aq5 . . =--- 
L perihelion (47) 

or finally to 

(3 + HC/A + 2C)$(1- HC/A)-’ (A f 0) (48) 
67rMG 

L 
- Ad’ perihelion - ___ 

where L is the semilatus rectum of the ellipse. The first factor in (48) is the prediction of 
general relativity. For A = 1, E = 0 and H = 0 this reduces to the correct Brans-Dicke 
result. We note in (47) that the final result depends only on the second-order terms W 
in t+b(r)-2H in standard coordinates and not on the first-order terms V in (44). Of 
course, first-order terms in the expansion of (12) contribute, since (12) is in isotropic 
coordinates. goo behaves similarly. 

If we repeat the calculation for A = 0, we can write the result as 

Aq5 . . =--- 67rMG( 3+H77 ) (A=O). 
L 3 ( 1 - H ~ )  perihelion (49) 

5. Discussion 

Let us take E = 0 in (1) and F = 2 H  in (4). The Eotvos experiment is then satisfied and 
electromagnetic fields can be put into Harrison’s work consistently. The red-shift 
experiment also predicts the same results as general relativity for all of these scalar 
tensor theories. From (27) and (43) 

= (general relativity result) ( 4 A 2 c 2 2 t f H A )  (A ’ O)‘ 
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The A = 0, E = 0 case is essentially equivalent to the Dicke (1962) theory and will not 
be discussed further. From (27) and (48), the advance of perihelion is given for E = 0 by 

(51) 
4A2 + 3/3 - HA 

Aq5perihelion = (general relativity result) 
6A2 + 3/3 + 3HA 

If H = 0 and A = 1, (50) and (51) reduce properly to the Brans-Dicke (1961) result, 
with our p equal to their w parameter. We obtain the general relativity limit as p + CO. 

Experimentally the correction bracket in (50) is 1*015zt0.011 as found by Fomalont 
and Sramek (1975). The correction bracket in (51), as reduced by Shapiro eta1 (1976) 
under the assumption that the solar quadrupole is exclusively due to uniform rotation, is 
1*003*0*005. 

The results in (50) and (51) represent the predictions of a theory given by the 
Lagrangian (1) with H # 0 describing variable particle masses through (2) and (3). Since 
experiments are usually carried out in laboratory units which are defined with particle 
masses constant, it is useful to transform (50) and (51) to these units with a units 
transformation. A true units transformation is of the form (3) and (4) carried out in such 
a way that the numerical value of the Lagrangian (1) is unchanged. Note that (4) relates 
theories with parameters A, E and constant particle masses to theories with parameters 
A’, E’ and variable particle masses. In order to use (4) to transform to laboratory units, 
then, we must change notation in (50) and (5 l), replacing A and /3 with A’ and p’, since 
(50) and (51) refer to variable rest masses in general. (We wrote equations (5)-(51) 
without primes to avoid hundreds of primes.) This gives 

&blight = (GR result) ( 4 A f ~ ~ ~ ~ ~ ~ ~ A f  - ) (units with variable particle masses) (50’) 

and 

4A” + 3p’- HA’ 
(units with variable particle masses). 

A4perihclion = (GR result) (6A” + 3 0 ’  + 3HA‘) 
( 5  1’) 

Using (4) with F = 2H and E =E’ = 0 then allows us to write (50’) and (51’) in terms of 
AI and PI, where a subscript 1 has been added to denote laboratory units to prevent 
confusion with A and p in (50) and (51). Thus A ’ = p A I - 2 H  and /3’= 
p2/31+6H(pA1--Ii)  from (4). This gives 

3A; + 2p1 
At$light = (GR result) -. --) (laboratory units) 

(4A: + 2/31 - (2H/p)A1 

and 

(The scalar transformation parameter p can be set equal to 1 without real loss of 
generality). We notice the very important result now that, even after we have 
transformed a theory with variable particle masses back to laboratory units, the original 
non-zero value of H still affects experiments and can be measured. Thus variable 
particle masses have observable effects. In addition, A,, /3, and H’ give us considerable 
freedom in fitting experiment to theory. (52) and (53) can easily be made compatible 
with the experimental results with reasonable choice of the parameters. 
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